## West Coast Earthquake Early Warning: Issues and imperatives

John Vidale PNSN Director Paul Bodin PNSN Manager

#### Two kinds of faults along Western U.S.



#### Cascadia: 3 kinds of quakes



Wednesday, March 6, 13

#### How often does Cascadia break?

- 500-year recurrence for M9 ruptures
  - that breaks whole CSZ
- 500- to 1000-year recurrence for M8.0-8.7
  - that only ruptures southern CSZ
  - so for southern portion of Cascadia subduction zone: 250- to 340-year recurrence time for M8.0 or larger earthquakes
- How many M6s and M7s? Not clear.

# Last 10,000 years of big earthquakes from offshore geology



#### Approximate 50-year probabilities

- This year's target:
  - Cascadia M9: 14%
  - Southern Cascadia M8-9: 25-40%
- Later, with denser, better instrumentation
  - -Shallow Seattle Fault M  $\geq$  6.5: 5%
  - -Shallow M  $\ge$  6.5 in entire Puget Sound area: 15%
  - –Deep M ≥ 6.5: 84% (1949, 1965, 2001)

## Big earthquakes and shaking hazard



#### **Coastal vs overall shaking hazard**



Sumatra 2004, similar to expected Cascadia M9 earthquake

Ishii, Shearer, Houston, and Vidale, Nature, 2005



# Ultimate goal

C 2011 Google C 2013 Google Insign 2 2018 TerraMetrics Data st0 5 04A, U.S. Navy: NGA, GEECO 4414914.08" N 120127180.05" W elev. 1440

## **Current Network**

Stations we Operate
 120 SP, 50 BB, 200 SM
 heterogeneous, historic
 diverse telemetry
 Data we Import
 data shared across network bour

- » we don't control these
- Acquisition/Processing
  - » same as California
  - » takes several minutes
  - » notification, product distribution through EIDS.









#### **EEW Network**

Low-latency backbone 66 BB, 150 GPS, 210 SM >> uniform instrumentation >> 6 field centers >> **Processing at Seattle** backup across 3 West >> Coast system centers. » coordinated by USGS Warnings may be distributed in a variety of ways.



## 3 Stages for EEW in Cascadia

- 1 Develop & deploy prototype EEW system based on current PNSN network (GBMF).
  - » Build on CISN-EEW efforts, adding (and testing)
    PNW-specific capabilities to target megathrust events.
  - » Beef up coastal stations where particularly thin.
- 2 Solidify operations for robust megathrust earthquake EEW.
- 3 Densify coverage and procedures to allow warnings for crustal and deep events.

#### Cascadia ElarmS2 + GPS





#### **Cascadian Capabilities**

#### Megathrust Earthquakes

- 1/2 minute to 5 minutes warning to urban centers (depending on quake starting point and location).
- Can forecast chance of M7+ growing to M9.
- Enhanced tsunami forecasts possible (w/ NOAA).
- Other Earthquakes (crustal, deep)
  - seconds to perhaps a minute of warning.
  - "Blind Zones" currently limit usefulness of proximate warnings.
  - Requires denser instrumentation.

#### **EEW** considerations

#### • Expense:

- Full system ~\$16M/yr for entire West Coast.
- However, coverage and costs are fluid.
- Everybody that's anybody is doing it:
  - Japan (~\$1B), China (~\$300M+), Mexico, Korea, Romania, Taiwan, are doing it now.

#### It's not hard:

- Basic physics known for more than a century.
- It's a good way to improve all ANSS performance:
  - Accurate results before chaos sets in.
  - Much better performance during chaos.

Quantitative earthquake risk FEMA (2008, all quakes) WA \$400M/yr OR \$200M/yr, ~\$1000/person/yr M9 estimates (minus California, Canada) Cost in Oregon, 2013 report \$30B Cost in Washington, 2012 WS-DNR HAZUS run \$15B+ (no tsunami, landslides, liquefaction) Comparisons Tohoku 2011 - \$250B+, Chile 2010 \$15-30B Sumatra 2004 - 230,000 killed

## Risk to PNW

- Shaking uneven
- Building uneven
- Aftermath
  - big crustal aftershocks
  - landslides, volcanoes
- Costs more than just direct damage
  - current business climate, image
  - insurance expense
  - neighborhood recovery
  - business continuity

Scenario Date: JUL 16 2009 09:00:00 PM PST PST M 9.0 N45.00 W124.50 Depth: 10.0km



11-111

IV

VI

VI

VIII

## Current status of PNW EEW

- ~\$80K/yr EEW funds from USGS
- \$1.8M grant from Moore Foundation
  - 4-yr plan (2012-2015) to prototype
  - Fall Technical workshop science, communications
  - End of year M8-9s Warnings to a handful of entities
- \$16M/yr for full implementation plan
  - For entire West Coast of US
  - Would take ten years to finish PNW
- Serious budget uncertainty in DC
- EEW seems inevitable (to us) eventually
  - could be full and centralized (USGS) could be partial and/or fragmented.

#### Short- and long-term issues

- Many benefits will be cumulative:
  - Building with specialized EEW equipment.
  - Linking in to networked operations.
  - People will learn to take better advantage of EEW with familiarity.
  - Growing pressure to provide awareness faster.
  - First step toward building out EEW to cover more risks, faster.
  - Building on other emergency warnings.

#### Next step - this workshop's focus

- We'll detect everything M > 3 in PNW.
  - set aside for now all but large events on the coast.
- Estimate probability that the ground rupture will spread across the length of Cascadia.
- Provide an estimate of shaking for specific sites in the case M > 7(?).
- We're offering to send these estimates to emergency managers that will work with us to improve their usefulness.
- Start of a process aimed at reaching full EEW capability 5-10 years.



## Peace of mind in earthquake country?

